NGA GLASS CONFERENCE[™] ISLE OF PALMS | CHARLESTON

FEBRUARY 5-8, 2024

New Technology:

Digitizing, Measuring, and Ensuring Quality

111

New Technology:

Digitizing, Measuring, and Ensuring Quality

Nate Huffman *LiteSentry – Softsolution - Strainoptics*

Eric Hegstrom

1

11/2

CulletScanner

Digitizing Daily Break Tests

Gage R&R Study

CulletScanner

Automatic fragmentation image analysis

- automatic break pattern analysis
- the only one, which checks the entire part
- finds best and worst areas automatically
- prevents operator errors
- 3 sizes available

()

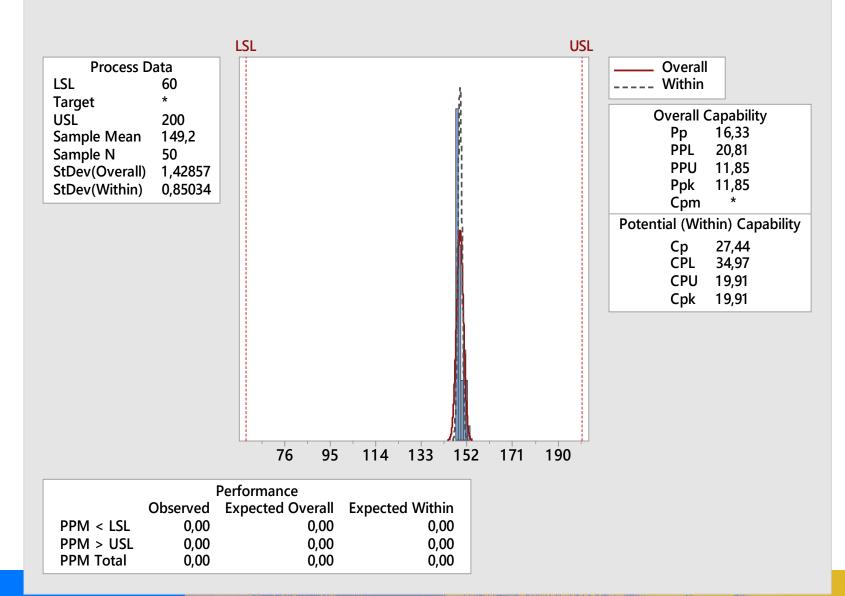
-) several norms available
- certificates and digital images

Gage R&R Study

Based on results from fragmentation analysis tests carried out by a customer in 2017, Softsolution decided to test the CulletScanner to find out whether it meets requirements common for measuring devices The following evaluation was done:

Planned steps:

- 1) Providing samples for measuring (Customer X)
- 2) Measuring of samples (Softsolution)
- 3) Data processing (Customer X)
 - a) Gauge capability study (50 measurings)
 - b) Capability study of other parameters (size and weight of cullet)
 - c) Gauge R&R study (10 parts, 3 runs, 3 operators)
- 4) Presenting of report (Customer X)


Analysis 1

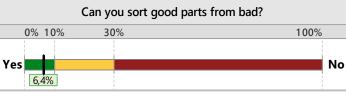
Gauge capability study

- Measured 1 part 50 times
- Compared to tolerance range of BS 3193
- Main parameter number of fragments (CC)

Results

- Excellent capability
- Potential ppm (parts per million < lower specification limit) = 0
- Results not influenced by device

Process Capability Report for Number of cullets


Analysis 2

- Measuring System Analysis
- Measured 10 parts, each 3 times by 3 operators
- Results compared to tolerance range
- Results
- Total R&R Excellent capability 13,1%
- Measurement system variation 6,4%
- Measuring device is acceptable

Can you adequately assess process performance?

The measurement system variation equals 13,1% of the process variation. The process variation is estimated from the parts in the study.

The measurement system variation equals 6,4% of the tolerance.

Study Information

Number of parts in study	10
Number of operators in study	3
Number of replicates	3

(Replicates: Number of times each operator measured each part)

Comments

General rules used to determine the capability of the system: <10%: acceptable 10% - 30%: marginal >30%: unacceptable

Examine the bar chart showing the sources of variation. If the total gage variation is unacceptable, look at repeatability and reproducibility to guide improvements:

• Test-Retest component (Repeatability): The variation that occurs when the same person measures the same item multiple times. This equals 99,0% of the measurement variation and is 13,0% of the total variation in the process.

• Operator component (Reproducibility): The variation that occurs when different people measure the same item. This equals 14,3% of the measurement variation and is 1,9% of the total variation in the process.

Analysis 3

• Analysis of additional features

Process Capability Report for Cullet weight

-0,00 0,13 0,26 0,39 0,52 0,65 0,78 0,91

Expected Within

0,00

0,00

0,00

USL

Overall

Within

Рр

PPL 68,31

Ppk 45,12

Cpm

Cp CPL 59,61

Overall Capabilit

PPU 45,12

Potential (Within) Capability

CPU 47,43

Cpk 47,43

71,79

56,72

- Vizualization of measuring stability
- Capability analysis of other parameters (Cullet Weight & Cullet Size)
- Results ٠

LSL

Performance

0,00

0,00

0,00

Observed Expected Overall

0,00

0,00

0,00

Process Data

StDev(Overall) 0,00293861

StDev(Within) 0.00279599

٥

0,602189

50

LSL

USL

Target

Sample Mean

Sample N

PPM < LSL

PPM > USL

PPM Total

Device is stable and capable also in other measured parameters

Process Capability Report for Cullet size

0,00 13,05 26,10 39,15 52,20 65,25 78,30 91,35

0,00

0,00 0,00

Expected Overall Expected Within

0,00

0,00

0,00

USL

LSL

Performance

Process Data

StDev(Overall) 0,262865

0

100

50

60,478

0,262339

Observed

0,00

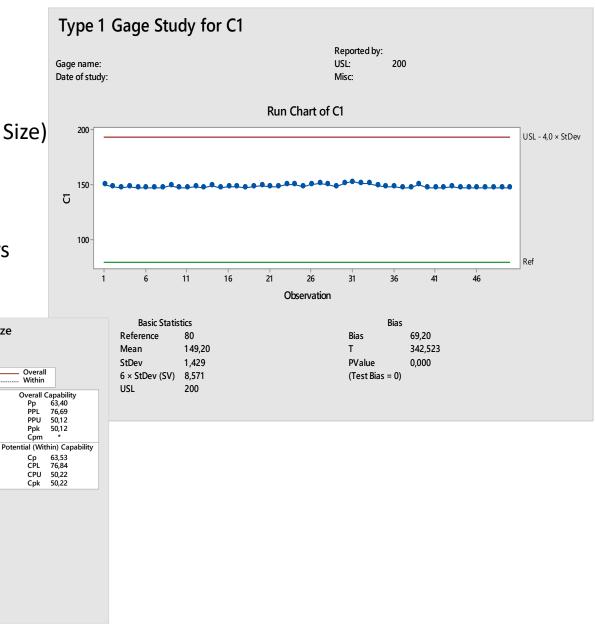
0,00

0,00

LSL

Target USL

Sample Mean


StDev(Within)

PPM < LSL

PPM > USL

PPM Total

Sample N

Conclusion

Advantages

- Gauge capability acceptable within common standards (e.g. VDA)
- Very good features for assessment of OK / NOK parts
- No influence of human factor on measuring
- Feedback to tempering process

Note

 Higher repeatability value 13,01% (target <10%) can be caused by various fragmentation behavior despite one batch is used for testing. Overal capability gives potential to reach target value.

IL.

11/2

BowScanner

NEW Inline Bow Measurement System:

First of its kind

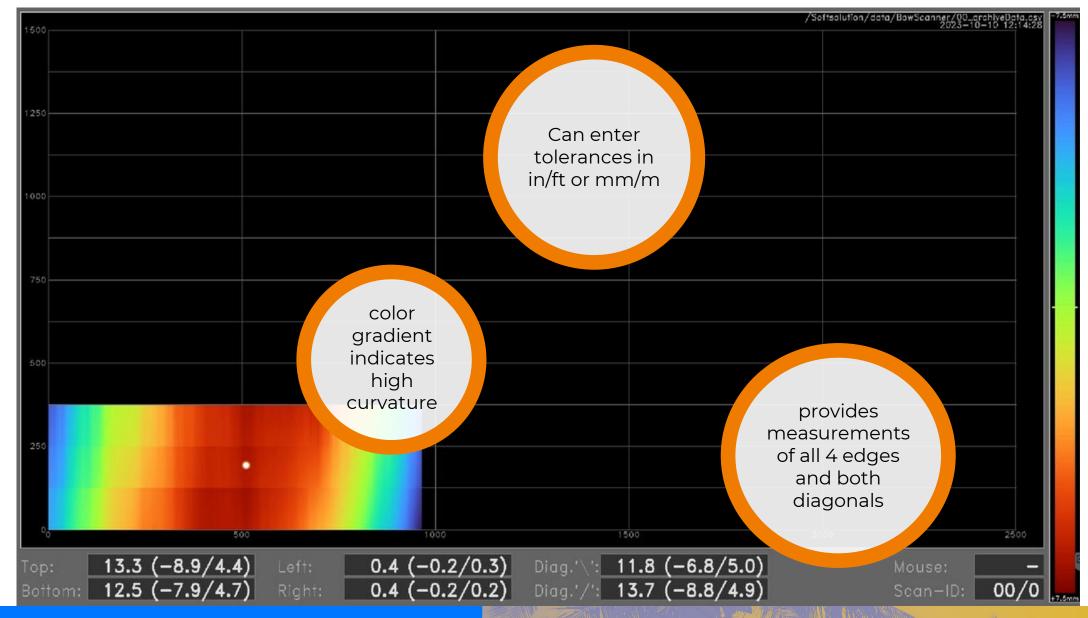
BowScanner

Overall Bow measurement inline

- measures overall bow inline for each glass
- provides measurements of all 4 edges and both diagonals
- 60 measurements per second

()

- sensor accuracy +/- 0.01mm or 0.01° (at standstill)
- can be integrated into a vertical LineScanner
- real measurement, reliable and fast



BowScanner HMI

								_	_	_	_	_	
2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13
05-24-55.csv_sca edDistColorIng	-	05-35-20.csv_scal edDistColorImg	06-32-47.csv_scal edDistColorImg	06-33-09.csv_scal edDistColorImg	06-33-51.csv_scal edDistColorImg	06-34-20.csv_scal edDistColorImg	07-50-49.csv_scal edDistColorImg	08-16-30.csv_scal edDistColorImg	08-16-47.csv_scal edDistColorImg	08-17-05.csv_scal edDistColorImg	08-17-23.csv_scal edDistColorImg	08-17-40.csv_scal edDistColorImg	08-17-58.csv_scal edDistColorImg
2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13
08-18-16.csv_sca edDistColorImg	l 08-18-34.csv_scal			08-19-27.csv_scal edDistColorImg		08-21-00.csv_scal edDistColorImg	08-21-18.csv_scal edDistColorImg	08-21-36.csv_scal edDistColorImg	08-21-54.csv_scal edDistColorImg		08-22-29.csv_scal edDistColorImg		08-23-05.csv_scal edDistColorImg
		cubiscoloning						cubiscoloning					
2023-07-13 08-23-22.csv sca	2023-07-13 I 08-23-40.csv scal	2023-07-13 08-23-58.csv scal	2023-07-13 08-24-37.csv scal	2023-07-13 08-25-17.csv scal	2023-07-13 08-25-35.csv_scal	2023-07-13 08-25-52.csv scal	2023-07-13 08-26-10.csv scal	2023-07-13 08-26-28.csv scal	2023-07-13 08-26-45.csv scal	2023-07-13 08-27-03.csv scal	2023-07-13 08-27-21.csv scal	2023-07-13 08-27-39.csv scal	2023-07-13 08-27-56.csv_scal
edDistColorImg		edDistColorImg											
2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13
08-28-14.csv_sca edDistColorImg		08-29-41.csv_scal edDistColorImg	08-29-59.csv_scal edDistColorImg	08-30-17.csv_scal edDistColorImg	08-30-35.csv_scal edDistColorImg	08-30-52.csv_scal edDistColorImg	08-31-10.csv_scal edDistColorImg	08-31-28.csv_scal edDistColorImg	08-31-46.csv_scal edDistColorImg	08-32-03.csv_scal edDistColorImg	08-32-21.csv_scal edDistColorImg	08-32-39.csv_scal edDistColorImg	08-33-19.csv_scal edDistColorImg
2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13
08-34-04.csv_sca edDistColorImg		08-34-40.csv_scal edDistColorImg	08-34-58.csv_scal edDistColorImg	08-35-15.csv_scal edDistColorImg	08-36-08.csv_scal edDistColorImg	08-38-44.csv_scal edDistColorImg	08-39-02.csv_scal edDistColorImg	08-39-19.csv_scal edDistColorImg	08-39-41.csv_scal edDistColorImg	08-40-06.csv_scal edDistColorImg	08-40-50.csv_scal edDistColorImg	08-43-03.csv_scal edDistColorImg	08-43-21.csv_scal edDistColorImg
		1000											1000
				2023-07-13 08-47-27.csv_scal	2023-07-13 08-47-45.csv_scal	2023-07-13 08-48-02.csv_scal	2023-07-13 08-48-26.csv scal	2023-07-13 08-48-51.csv_scal	2023-07-13 08-49-37.csv_scal	2023-07-13 08-51-44.csv_scal	2023-07-13 08-52-02.csv_scal	2023-07-13 08-52-19.csv_scal	2023-07-13 08-52-40.csv scal
				edDistColorImg									
Bow	Scal	nno	r										
	Scal		2023-07-13 08-56-49.csv scal	2023-07-13 08-57-19.csv scal	2023-07-13 08-57-44.csv scal	2023-07-13 08-58-09.csv scal	2023-07-13 08-58-45.csv scal	2023-07-13 09-00-59.csv scal	2023-07-13 09-01-17.csv_scal	2023-07-13 09-01-42.csv scal	2023-07-13 09-02-07.csv scal	2023-07-13 09-02-34.csv scal	2023-07-13 09-02-55.csv scal
real production			edDistColorImg										
real production	ILEP		5				4.44		1				
												100	1000
	2023-07-13 I 09-06-06.csv_scal				2023-07-13 09-07-51.csv_scal	2023-07-13 09-09-58.csv_scal	2023-07-13 09-10-31.csv_scal	2023-07-13 09-13-56.csv_scal	2023-07-13 09-14-48.csv_scal	2023-07-13 09-18-36.csv_scal	2023-07-13 09-23-06.csv_scal		2023-07-13 09-27-24.csv_scal
edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg	edDistColorImg
2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13
09-29-39.csv_sca edDistColorIng	-	09-31-17.csv_scal edDistColorImg	09-32-36.csv_scal edDistColorImg	09-33-37.csv_scal edDistColorImg	09-33-54.csv_scal edDistColorImg	09-34-13.csv_scal edDistColorImg	09-34-32.csv_scal edDistColorImg	09-34-51.csv_scal edDistColorImg	09-35-13.csv_scal edDistColorImg	09-35-35.csv_scal edDistColorImg	09-35-59.csv_scal edDistColorImg	09-36-34.csv_scal edDistColorImg	09-36-52.csv_scal edDistColorImg
				_				_					
2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13	2023-07-13

the second

M

TS4000 Thickness & Coating Sensor

Ensuring Quality and Granulating Data

Description /Type	TS3000	TS4000	TS4000HT	TS5000
coated or not coated (but will not discern coating type)	\checkmark	\checkmark	\checkmark	✓
Thickness measurement range: 0 – 0.19.0 mm for single pane	\checkmark	\checkmark	\checkmark	\checkmark
Discern coating type & tinted glass (incl. electrochromic, pyrolytic coatings and more) on front and most back sides (depending on product transmission percentage)	×	~	~	~
with heatsink to operate in furnace rooms with higher ambient temperatures	×	×	\checkmark	×
Provide air gap for double and triple pane IG Units	×	×	×	✓
identify coated surface (without discerning it) on double and triple IGU	×	×	×	\checkmark

THANK YOU!

Questions?

