NGA GLASS CONFERENCE[™] ISLE OF PALMS | CHARLESTON

FEBRUARY 5-8, 2024

A Proposed Method for Predicting the Load Resistance of a Particular Type of Ceramic Enamel Coated Glass

> A. William Lingnell, P.E. Lingnell Consulting Services

Background

- ASTM E1300 "Standard Practice for Determining Load Resistance of Glass in Buildings"
 - Conservative glass thickness selection procedure
 - Flat glass
 - Uniform pressure loads
- All published problems with ceramic enameled glass
 - Thermal stress
 - Heat Strengthened
- No published problems with ceramic enameled glass
 - Uniform pressure loads
 - Fully Tempered

Proposed Modifications to ASTM E1300 for Ceramic Enameled Glass

- Calls for strength reduction factor
- Based on comparison of uncoated vs ceramic enameled glass
 - Mean strengths
 - Freshly Manufactured
- The strength of freshly manufactured ceramic enameled glass is less than the strength of freshly manufactured uncoated clear glass
 - Assuming same type and geometry
- ASTM E1300 recommendations are based on strength of in-service glass and not the strength of freshly manufactured glass
- No clear evidence for need to modify ASTM E1300 for use with ceramic enameled glass

Proposed Modifications to ASTM E1300 for Ceramic Enameled Glass

- Added note on ceramic enamel coatings
 - States ceramic enamel coatings are known to affect glass load resistance
 - Contact glass manufacturer for guidance on specific products

What Now...

- The direct way to evaluate the applicability of ASTM E1300 to ceramic enamel glass is compare
 - Measured loads on full-scale ceramic enameled glass plates
 - Design loads predicted by ASTM E1300

Full-Scale Ceramic Enameled Glass Plate Tests

- 1,016 mm X 1,524 mm X 6-mm (40" X 60" X ¼") Specimens
 - Set of 10 uncoated glass plates
 - Freshly Manufactured
 - Heat Strengthened
 - Set of 10 ceramic enameled glass plates
 - Light grey
 - Roll-coater applied
 - 4-5 mils wet film
 - Full-flood coverage
 - Heat Strengthened
- Provided by Glass Coatings & Concepts, LLC
- Tested by Beason Brackin & Associate, LLC

Full-Scale Ceramic Enameled Glass Plate Tests

Full-Scale Ceramic Enameled Glass Plate Tests

	Mean 3-sec Breakage Load	COV of 3-sec Breakage Load	Probability of Breakage Design Load	Design Load Greater Than Required by ASTM E1300
Uncoated Glass	24 KPa (501 psf)	8.1%	19.3 KPa (403 psf)	3.66 X
Ceramic Enamel Glass	13.8 KPa (288 psf)	2.9%	12.8 KPa (268 psf)	2.44 X

1

However...

- Testing full-scale glass plates
 - Challenging
 - Expensive
 - Unnecessary
- Testing smaller glass beams
 - Conservatively compares to full-scale test data
 - Represents the strength of ceramic enamel coated glass
- Both methods show an approximate 40% reduction in strength compared to freshly-manufactured, uncoated clear glass

Proposed Design Procedure for Ceramic Enamel Glass

- Rational evaluation procedure for ceramic enamel coated glass
- Employs the use of
 - Simple four-point beam tests
 - Common load-duration corrections
 - Standard normal statistical applications
 - ASTM E1300

Proposed Design Procedure for Ceramic Enamel Glass

- STEP 1: Select representative specimens
- STEP 2: Measure RCSS of each specimen
- STEP 3: Subject specimens to four-point bend tests
- STEP 4: Calculate net breakage stress for each specimen
- STEP 5: Adjust stress data for 3-sec load duration
- STEP 6: Calculate mean and standard deviation for 3-sec stress data
- STEP 7: Determine the net design stress for 8 lites per 1,000 breakage probability and 3-sec load duration
- STEP 8: Calculate the design stress by adding the net design stress (Step 7) to RCSS (Step 2)

Proposed Design Procedure for Ceramic Enamel Glass

- STEP 9: Determine the design pressure for specific glass plate
 - Geometrically non-linear plate analysis
 - Design stress (Step 8)
- STEP 10: Use ASTM E1300 to determine design pressure
 - Uncoated clear glass plate
- STEP 11: Take the lowest design pressure from beam tests (Step 9) and ASTM E1300 (Step 10)

STEP 1: Select Representative Specimens

- Example of ceramic enamel glass beams
 - 305 mm X 610 mm X 6-mm (12 x 24 x ¼ in.)
 - Full-flood coverage
 - 4-5 mil wet film
 - Roll-coater applied
 - Heat Strengthened

STEP 2: Measure RCSS of each specimen

• Determine the Mean Residual Compressive Surface Stress (RCSS)

 $\sigma_{RCSS} = 45.5 MPa \ (6,595 PSI)$

STEP 3: Subject specimens to four-point bend tests

• This testing results in a mechanical stress, $\sigma(t)$, vs time, t, relationship up to the point of failure.

11

STEP 3: Subject specimens to four-point bend tests

STEP 4: Calculate net breakage stress for each specimen

• Calculate net tensile breakage stress for each specimen

$$\sigma_{net}(t) = \sigma_{BR}(t) - \sigma_{RCSS}$$

• Here σ_{BR} could also be called "mechanical stress"

STEP 5: Adjust Measured Stress Data for 3-sec Load Duration Equivalent Failure Stress

• Calculate net 3-sec equivalent failure stress

$$\sigma_{net_{3}\,sec} = \left[\frac{\int_{0}^{t_{f}} [\sigma_{net}(t)]^{n} dt}{3}\right]^{1/16}$$

- σ_{net} is taken to be zero if it is less than zero
- In no case, so far, has a ceramic enamel glass beam failed at a stress level that is less than the measured RCSS
- No risk of failure until the mechanical stress exceeds the RCSS and the surface of the glass is subjected to tension.

STEP 5: Adjust Measured Stress Data for 3-sec Load Duration Equivalent Failure Stress

 Remember the net tensile stress value is found by subtracting the RCSS from the mechanical stress

 $\sigma_{net} = \sigma_{BR} - \sigma_{RCSS}$

- It is the net tensile stress variation with time and the RCSS which control the behavior of the glass
- The 3-sec duration equivalent mechanical failure stress is determined by adding back the RCSS as follows.

$$\sigma_{3 sec} = \sigma_{net_{3 sec}} + RCSS$$

STEP 6: Calculate Mean and Standard Deviation for 3-sec Stress Data

- Summary of 3-sec load duration mechanical stress results
 - N = 20
 - Mean = 75.7 MPa (10,973 psi)
 - Standard Dev = 2.96 MPa (429 psi)
 - COV = 3.9%

- Summary of 3-sec load duration net tensile stress results
 - N = 20
 - Mean = 30.2 MPa (4,378 psi)
 - Standard Dev = 2.96 MPa (429 psi)
 - COV = 9.8%

STEP 6: Calculate Mean and Standard Deviation for 3-sec Stress Data

 Note the mean RCSS plus the mean net 3-second duration stress is equal to the mean of the 3-second duration mechanical stress as follows:

45.5 MPa (6,595 PSI) + 30.2 MPa (4,378 psi) = 75.7 MPa (10,973 psi)

STEP 7: Determine the Net Design Stress for 8 Lites Per 1,000 Breakage Probability and 3-sec Load Duration

- The 3-sec load duration strength of ceramic enamel glass is controlled
 - RCSS
 - Variability associated 3-sec net tensile stress values
- Symmetrical normal distribution
 - Design stress corresponding to 8 lites per 1000 probability of breakage
 - Universally accepted
 - Fit examined with seven statistical tests

STEP 7: Determine the Net Design Stress for 8 Lites Per 1,000 Breakage Probability and 3-sec Load Duration

• The 8/1000 probability of failure stress-over design value

 $\sigma_{net_{3sec}} = 30.2 \text{ MPa} (4,378 \text{ psi}) - 2.41 x 2.96 \text{ MPa} (429 \text{ psi})$

23.1 MPa (3,346 psi)

STEP 8: Calculate the Design Stress

• The 3-second duration mechanical design stress, σ_Design , is found by adding the RCSS to the 8/1000 probability of failure stress-over design value as follows:

 $\sigma_{Design} = 45.5 MPa (6,599 psi) + 23.1 MPa (3,346 psi)$

68.6 *MPa* (9,945 *psi*)

STEP 8: Calculate the Design Stress

- ASTM E1300 provides a conservative allowable design stress
 - Corresponds to 8/1000 probability of breakage
 - Special glass shapes
 - Loads not covered

$$\sigma_{HS_{Design}} = 46.5 MPa \ (6,750 \, psi)$$

 Measured 8/1000 design load for 3-sec load duration for ceramic enamel glass is 47.3% greater than ASTM E1300 allowable stress

$$47.3\% = \frac{9,945 \, psi - 6,750 \, psi}{6,750 \, psi}$$

$$47.3\% = \frac{68.6 MPa - 46.5 MPa}{46.5 MPa}$$

STEP 9: Determine the Design Pressure for Specific Glass Plate

- Geometrically non-linear plate analysis
 - 1,016 mm X 1,524 mm X 6-mm (40" X 60" X ¼")
 - Four sides simply supported
- Design stress from Step 8
 - 68.6 *MPa* (9,945 *psi*)

9.72 KPa (203 psf)

111

STEP 10: Use ASTM E1300 to Determine Design Pressure

- Uncoated, clear glass
 - 1,016 mm X 1,524 mm X 6-mm (40" X 60" X ¼")
 - Four sides simply supported

5.27 KPa (110 psf)

STEP 11: Take the Lowest Design Pressure from Beam Tests and ASTM E1300

• Glass beams

Width	Height	ASTM E1300 Load Resistance	Ceramic Enamel Load Resistance	Design Load Greater Than Required by ASTM E1300
305 mm	610 mm	5.27 KPa	9.72 KPa	1.85 X
(12 in.)	(24 in.)	(110 psf)	(203 PSF)	

• Full-scale glass plates

Width	Height	ASTM E1300 Load Resistance	Ceramic Enamel Load Resistance	Design Load Greater Than Required by ASTM E1300
1,524 mm	1,016 mm	5.27 KPa	13.8 KPa	2.62 X
(60 in.)	(40 in.)	(110 psf)	(288 PSF)	

11

1

111

Thank you!

A. William Lingnell, P.E. Lingnell Consulting Services